Lubrificazione stampi con tecnologia

MicroSpray

ANALISI COMPARATA TRA LUBRIFICAZIONE TRADIZIONALE E LUBRIFICAZIONE MICROSPRAY A VALLE DI UNA OTTIMIZZAZIONE STAMPO OTTENUTA TRAMITE SIMULAZIONE TERMICA E TERMOREGOLAZIONE EFFICIENTE. UN CASO DI STUDIO.

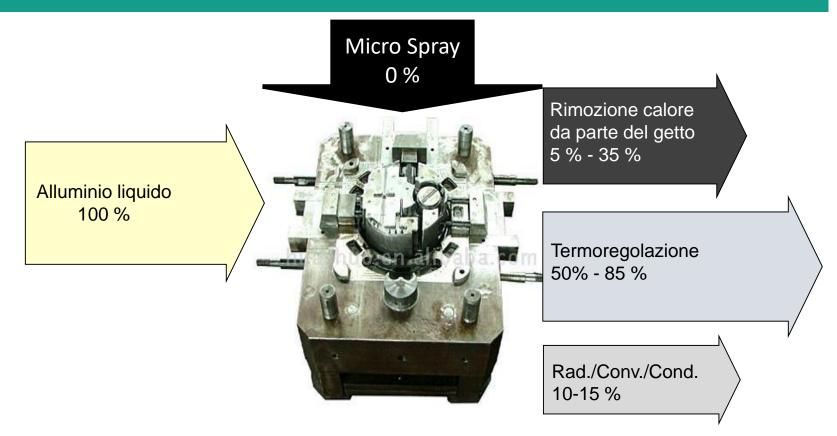
Franco Pollio D'Avino Luca Metelli

PERCHE' UTILIZZARE LA TECNOLOGIA MICROSPRAY?

per abbattere i tempi ciclo

per ridurre i consumi di aria

per aumentare la vita stampo


per ridurre i consumi di distaccante

per ridurre i conti di smaltimento

per migliorare la qualita' dei getti

IL CONCETTO ALLA BASE DELLA TECNOLOGIA MICROSPRAY

A livello di lubrificazione l'utilizzo di prodotti MicroSpray, come olii e concentrati, cambia l'approccio del fonditore al processo di lubrifica. Laddove prima si puntava a raffreddare lo stampo con la lubrificazione, ora si cerca di utilizzare la lubrificazione unicamente per lo scopo principale per cui viene effettuata: **permettere al getto di staccarsi dallo stampo.**

Le discriminanti per l'utilizzo di questa tecnologia sono le seguenti:

- per ottenere i massimi risultati, il prodotto deve essere microdosato: la **precisione** e la **ripetibilità** dell'applicazione del microdosaggio sono fondamentali.
- il calore, che prima veniva sottratto dall'evaporazione del distaccante base acqua, andrà eliminato tramite la **termoregolazione.**

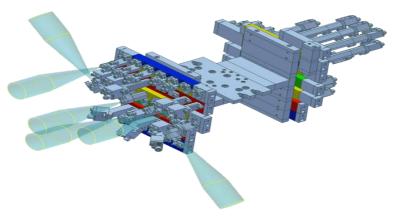
LA TECNOLOGIA DI DOSAGGIO

Ugello DD – ECO Spray

Ugello a impulso

Volumi regolabili tra 0,0072 ml e 0,119 ml

Ideale per lubrificazione a maschera



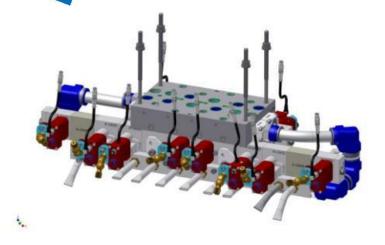
WOLLIN

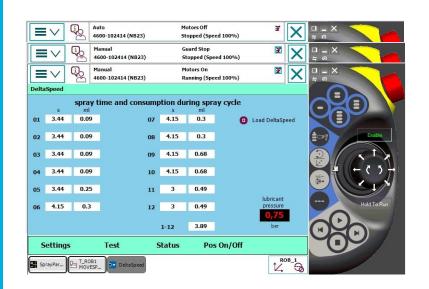
SYSTEMATIC SPRAYING TECHNOLOGY

DD 3	EDV 800807	0,043ml	0,0072 ml/rotation					
DD 4	EDV 800413	0,076ml	0,0127 ml/rotation					
DD 5	EDV 801130	0,119ml	0,0198 ml/rotation					
Circuit	1	2	3	4	5	6	7	8
Nozzle amount DD 3	0	0	0	0	0	0	0	0
DD 3 open 1 rotation	0	0	0	0	0	0	0	0
DD 3 open 2 rotation	0	0	0	0	0	0	0	0
DD 3 open 3 rotation	0	0	0	0	0	0	0	0
DD 3 open 4 rotation	0	0	0	0	0	0	0	0
DD 3 open 5 rotation	0	0	0	0	0	0	0	0
DD 3 open 6 rotation	0	0	0	0	0	0	0	0
Nozzle amount DD 4	0	0	0	0	0	0	0	0
DD 4 open 1 rotation	0	0	0	0	0	0	0	0
DD 4 open 2 rotation	0	0	0	0	0	0	0	0
DD 4 open 3 rotation	0	0	0	0	0	0	0	0
DD 4 open 4 rotation	0	0	0	0	0	0	0	0
DD 4 open 5 rotation	0	0	0	0	0	0	0	0
DD 4 open 6 rotation	0	0	34	28	18	12	0	0
Nozzle amount DD 5	0	0	0	0	0	0	0	0
DD 5 open 1 rotation	0	0	0	0	0	0	0	0
DD 5 open 2 rotation	0	0	0	0	0	0	0	0
DD 5 open 3 rotation	0	0	0	0	0	0	0	0
DD 5 open 4 rotation	0	0	0	0	0	0	0	0
DD 5 open 5 rotation	0	0	0	0	0	0	0	0
DD 5 open 6 rotation	0	0	0	0	0	0	0	0
Pulse number	0	0	2	2	2	2	0	0
Amount per Pulse	0	0	2,5908	2,1336	1,3716	0,9144	0	0
Amount Cycle	0	0	5,1816	4,2672	2,7432	1,8288	0	0
Nozzle amount fixed		40	3,048 ml/puls		6,10 ml/cycle		14,02	ml Cycle
Nozzle amount moving		52	3,9624 ml/puls		7,92 ml/cycle			
Nozzle amount complete		92	7,0104 ml/puls		14,02 ml/cycle			

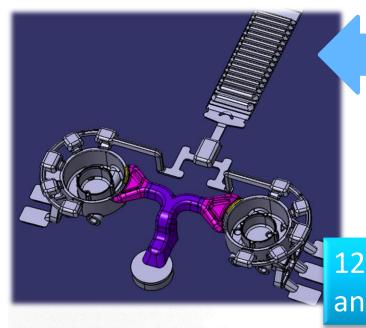
LA TECNOLOGIA DI DOSAGGIO

Ugello DELTASPEED

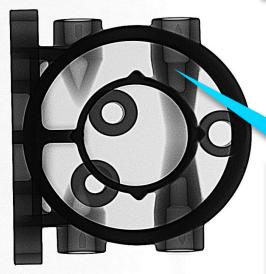

Volumi programmabili tra 0,02 ml e 1,7 ml per ugello


Ugello a spruzzo continuo con comando elettrico

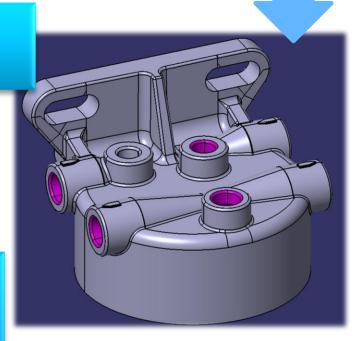
Ideale in caso di frequenti cambi stampo


AEDAUTOMATION

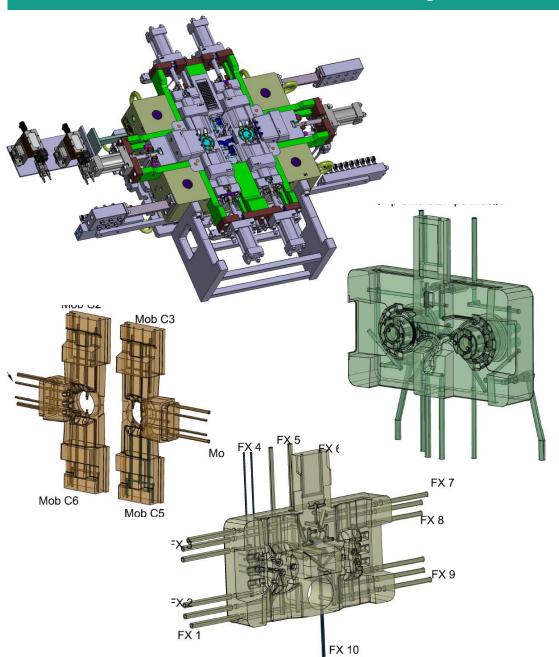
Excellence in Spraying Solutions



CASO DI STUDIO – IL GETTO



2 IMPRONTE PESO TOTALE GETTO 1900 gr


120.000 pezzi anno

OBBIETTIVO: RIDURRE LE POROSITA'

CASO DI STUDIO – LO STAMPO – struttura e termoregolazione

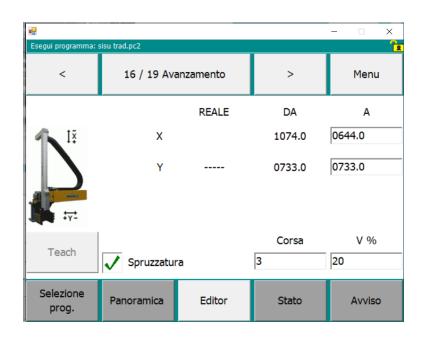
Pressa	700 ton
PM	12 jet cooling
PM	18 cascate
PF	6 heat pipes
PF	6 jet cooling
PF	10 cascate
Vuoto	1 chill block

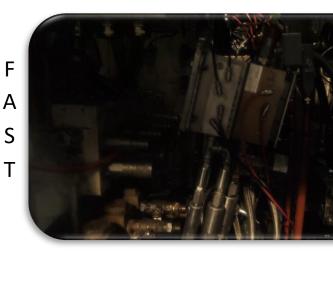
CASO DI STUDIO – IL CICLO DI LUBRIFICA – lubrifica tradizionale a base acqua

LA TESTA DI LUBRIFICA

Il ciclo di lubrifica tradizionale prevede una testa composta da:

- 7 ugelli di lubrifica sul Piano Fisso
- 19 ugelli di lubrifica sul Piano Mobile


Ogni ciclo comporta un utilizzo di **500 ml** di distaccante, pari a **263 ml per kg di alluminio**.


CASO DI STUDIO – IL CICLO DI LUBRIFICA – lubrifica tradizionale a base acqua

<u>IL CICLO DI LUBRIFICA</u>

S L O W TEMPO CICLO DI LUBRIFICA 16 SEC. PARI AL 32% DEL CICLO TOTALE

PM PRIMA DI LUBRIFICA

PM DOPO LUBRIFICA

TEMPERATURA MATRICI STAMPO OMOGENEA

ΔT DI 80°

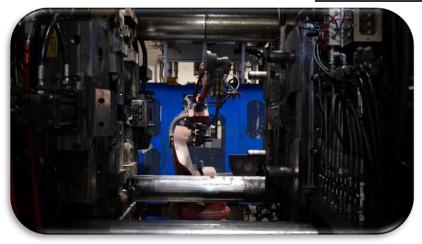
CREAZIONE DI ZONE FREDDE SUI CARRI E INGRESSO COLATA

CASO DI STUDIO – IL CICLO DI LUBRIFICA – lubrifica MicroSpray

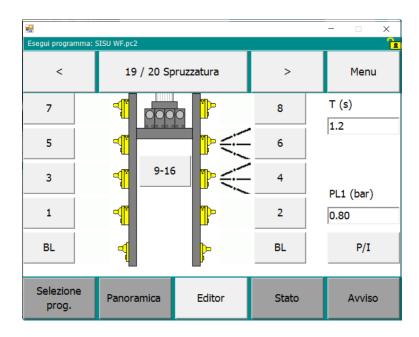
LA TESTA DI LUBRIFICA

PIANO FISSO

PIANO MOBILE


Il ciclo di lubrifica WaterFree prevede una testa composta da :

- 8 ugelli di lubrifica sul Piano Fisso
- 18 ugelli di lubrifica sul Piano Mobile


Ogni ciclo comporta un utilizzo di **2 ml** di distaccante, pari a **1 ml per kg di alluminio**.

CASO DI STUDIO – IL CICLO DI LUBRIFICA – lubrifica MicroSpray

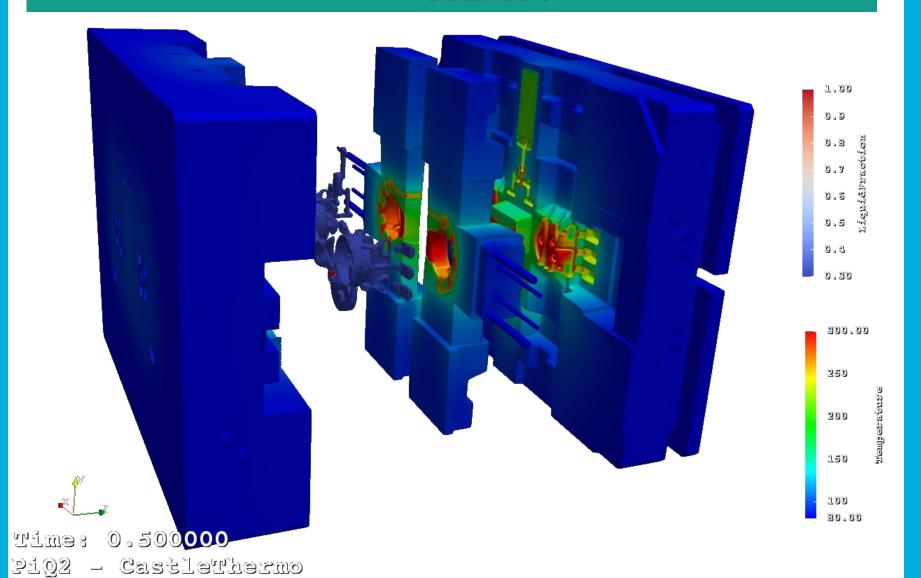
<u>IL CICLO DI LUBRIFICA</u>

S L O W TEMPO CICLO DI LUBRIFICA 12 SEC. PARI AL 26% DEL CICLO TOTALE

CASO DI STUDIO – IL CICLO DI LUBRIFICA – *lubrifica MicroSpray*

PM PRIMA DELLA LUBRIFICA

PM DOPO LUBRIFICA

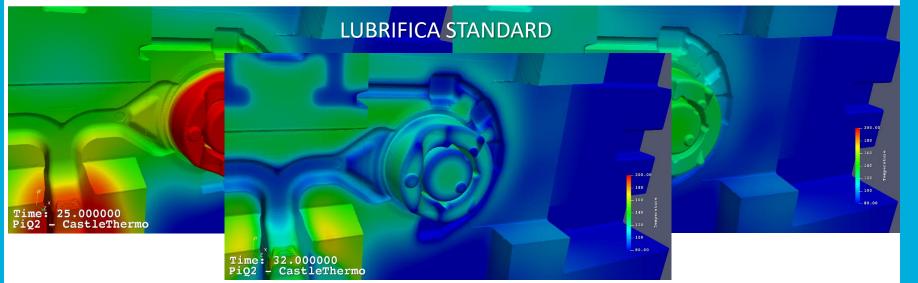


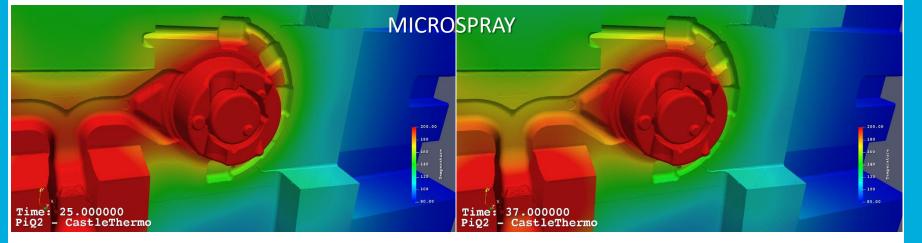
TEMPERATURA DELLO STAMPO UNIFORME

ΔT DI 20°

IL LUBRIFICANTE CI PERMETTE DI LAVORARE AD ALTE TEMPERATURE

CASO DI STUDIO – IL CICLO DI LUBRIFICA – analisi CASTLETHERMO

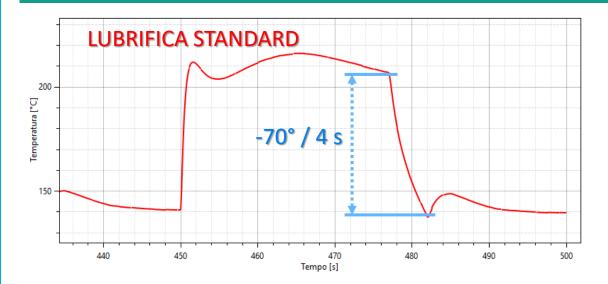


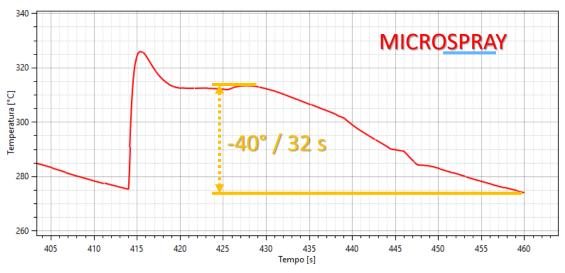


CASO DI STUDIO – IL CICLO DI LUBRIFICA – analisi CASTLETHERMO

PM PRIMA DELLA LUBRIFICA

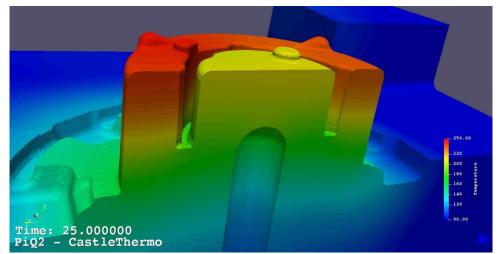
PM DOPO LUBRIFICA





La simulazione permette di evidenziare chiaramente la caduta di temperatura sulla pelle dello stampo con la lubrifica tradizionale.

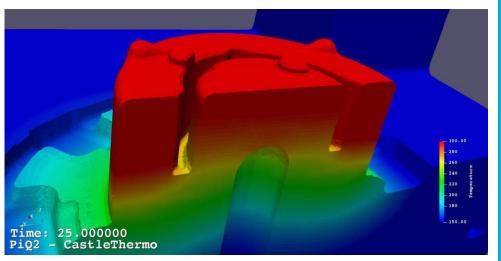
CASO DI STUDIO – IL CICLO DI LUBRIFICA – lubrifica MicroSpray – analisi CASTLETHERMO

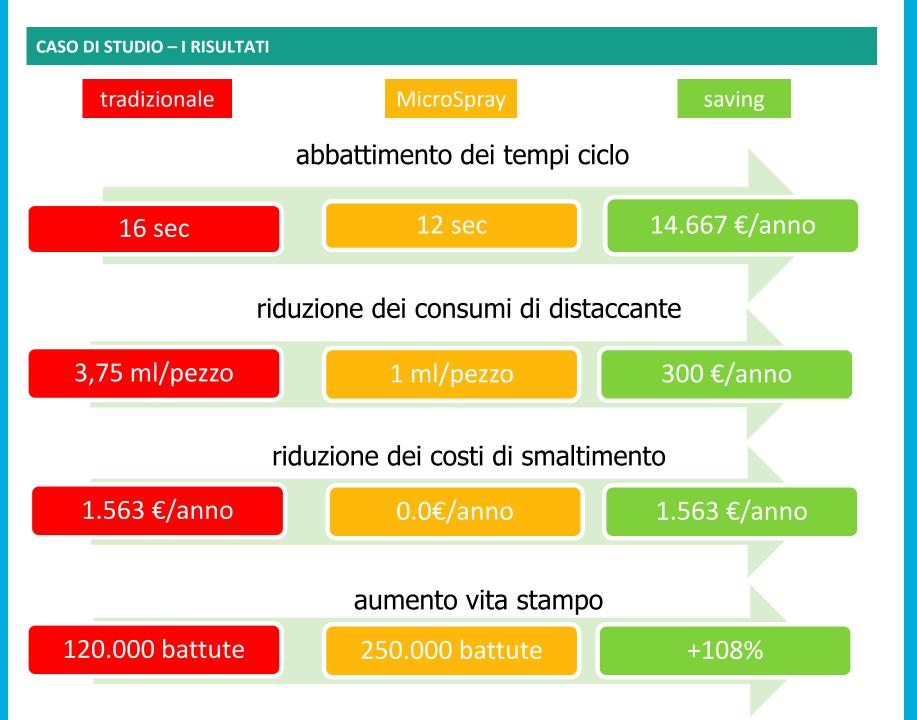


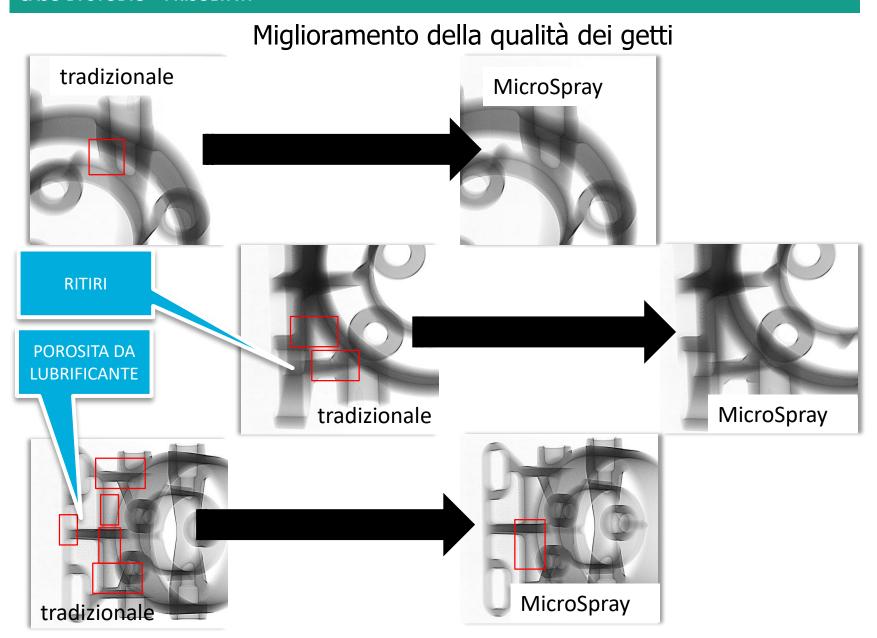
Questa caduta si evidenzia anche confrontando l'andamento della temperatura nella termocoppia posta poco sotto la superficie del PM nei due casi.

CASO DI STUDIO – IL CICLO DI LUBRIFICA – lubrifica MicroSpray – analisi CASTLETHERMO

LUBRIFICA STANDARD




La lubrifica standard comporta **shock termici elevati** sulla superficie delle parti stampanti bagnata dal metallo


MICROSPRAY

La lubrifica microspray <u>non da luogo a</u> <u>shock termici</u> e consente di allungare la vita dello stampo

Grazie per la vostra attenzione

